

You Don't Have to be a Rocket Scientist: JMP Martian Chronicles

October 20, 2017

Kristo Kriechbaum, Jet Propulsion Lab California Institute of Technology <u>Kristopher.L.Kriechbaum@jpl.nasa.gov</u>

Jim Wisnowski, Adsurgo LLC james.wisnowski@adsurgo.com

Mars 2020 Rover

- The Mars 2020 rover will robotically explore the red planet's surface for at least 1 Martian year (687 Earth days)
- Builds on success of Mars Science Laboratory's Curiosity Rover to minimize program risk

Sample Caching Subsystem

Subsystem Design

- We don't get to control Mars!
 - Subsystem design highly informed by testing
- Key requirements:
 - Collect ~40 cores of varying sample types
 - Core quality Best core has a few number of large pieces
 - Samples must be "hermetically" sealed
- Measurable responses
 - Core quality
 - Mass and number of pieces to pass through sieves of 2, 5, 10 and >10 mm
 - Sample volume
 - Drilling Performance
 - Avg cycle sideload
 - Avg cycle percussion current
 - Avg drilling torque
 - Avg percussion power
 - Avg rate of penetration
 - Seal leak rate

Vignette 1. Complex Distribution

- Problem: What is the overall distribution for Core Total Mass given we have test data for the 4 types of rocks but at much different percentages than expected for 2020 missions
- Platforms and topics: data cleaning, data visualization, filtering, fitting non-normal distributions, simulation
- Methodology: For each rock type, determine the best distribution and parameters, generate 100,000 * (expected percent on Mars) observations, concatenate all 4 random variates, fit all 100,000 observations to a new distribution

• Results:

- Log Generalized Gamma is best fit
- Dynamic exploration with profilers

Vignette 1. Complex Distribution

Model Comparisons

Distribution	AICc
Log Generalized Gamma	483924.04
SEV	484454.23
Logistic	494677.33
Normal	495485.46
LEV	538932.46

Vignette 2. Modelling Bit Wear

- Problem: How can we model the impact of bit wear on drill performance metrics?
- Platforms and topics: data visualization, fit curve, nonlinear modelling, column switcher, multivariate, fit model stepwise
- Methodology: Measure bit wear 4 times, fit candidate nonlinear models, create new control variable as bit wear, run regression models
- Results:
 - Bit wear approximated well by Logistic 3Parameter Sigmoid Curve
 - Makes sense from physics of failure/degradation models
 - Highly correlated with Time in USB rocks
 - Useful control variable for many of the responses

Vignette 2. **Modelling Bit Wear**

Prediction Model

$$\frac{c}{\left(1 + Exp\left(-a \cdot \left(Test \, Number - b \,\right)\right)\right)}$$

a =Growth Rate

b = Inflection Point

c = Asymptote

■ Prediction Profiler

Vignette 2. Modelling Bit Wear

-0.3997

0.6037

CoreVol_GT_10mm

CoreNumPieces

Vignette 2. Modelling Bit Wear

Problem: Hermetic seal performance is highly dependent on line load, but it is not directly measurable! Line load is estimated via nonlinear FEA model

- Platforms and topics: space filling predictive modeling, profiler and optimization
- Methodology: Create space filling with candidate factors, fit neural holding back a few runs as validat
- Results:
 - Simple neural network model captures the nonlinearities
 - First form of line load model used before sealing test to compute ideal part dimensions
 - Second form of line load model used after sealing test to estimate actual achieved line load

- Space filling design with 3 factors
- 15 runs chosen as a good balance between filling the space and not overwhelming the FEA analyst

 Single FEA run gives 100's of datapoints for Tooth Interference and Tube Expansion

3 runs randomly selected to hold

back for validation

• Something with Training profiler?

Line_Load Measures RSquare

Summary

- High priority Mars 2020 program is experimenting to accurately characterize and optimize coring performance
- Though modest in terms of number of runs with custom and definitive screening designs, many responses, factors, and covariates present many of the analytic challenges we see in "Big Data"
- Methodical approach combines data visualization and statistical modeling techniques to quickly prepare and clean data followed by interactive exploration to form valid models
- Analysis will inform design for next series of tests

Questions

